人类直觉允许在他们从未经历过的情况下发现异常的驾驶情况。就像人类检测到这些异常情况并采取对策以防止碰撞一样,自动驾驶汽车需要异常检测机制。但是,文献缺乏比较异常检测算法的标准基准。我们填补了空白,并提出了R-U-MAAD基准测试,以用于多代理轨迹中无监督的异常检测。目的是学习从没有标签的训练序列中的正常驾驶的表示,然后检测异常。我们将argvoss运动的预测数据集用于培训,并提出了160个序列的测试数据集,该数据集在城市环境中具有人类通知的异常。为此,我们结合了现实世界中的轨迹和场景依赖性异常驾驶的重播。在我们的实验中,我们比较了11个基线,包括线性模型,深层自动编码器和使用标准异常检测指标的一级分类模型。深度重建和端到端的一级方法显示出令人鼓舞的结果。基准模型将公开可用。
translated by 谷歌翻译
自动驾驶应用中使用的激光雷达传感器会受到不利天气条件的负面影响。一种常见但有研究的效果是在寒冷的天气中凝结车辆气体的凝结。这种日常现象会严重影响雷达测量值的质量,从而通过创建像幽灵对象检测之类的人工制品,从而导致不太准确的环境感知。在文献中,使用基于学习的方法来实现雨水和雾之类的不利天气影响的语义分割。但是,这样的方法需要大量标记的数据,这可能非常昂贵且艰辛。我们通过提出两步方法来检测冷凝车气排气的方法来解决这个问题。首先,我们在场景中为每辆车确定其排放区域,并在存在的情况下检测气体排气。然后,通过对可能存在气体排气的空间区域进行建模来检测到孤立的云。我们测试了实际城市数据的方法,表明我们的方法可以可靠地检测到不同情况下的气体排气,从而吸引了离线预标和在线应用程序(例如幽灵对象检测)的吸引力。
translated by 谷歌翻译
在自动驾驶领域内朝着更高水平的自动化迈进的进步伴随着对车辆操作安全的需求的增加。由计算资源的限制引起的,算法的计算复杂性之间的权衡及其在确保自动化车辆安全运行的潜力之间经常遇到。情境感知的环境感知提出了一个令人鼓舞的例子,其中计算资源分布在感知区域内的区域,这些区域与自动车辆的任务相关。尽管经常利用先前的地图知识来确定相关区域,但在这项工作中,我们提供了仅依赖在线信息的安全区域的轻量级标识。我们表明,我们的方法可以在关键方案中实现安全的车辆操作,同时在环境感知中保留了不均匀分配资源的好处。
translated by 谷歌翻译
自动化代理的环境感知领域的进步导致生成的传感器数据持续增加。处理这些数据的可用计算资源必将变得不足以实时应用程序。通过基于代理商的情况识别最相关的数据(通常称为情况意识)来减少要处理的数据量,并增加了研究的兴趣,并且预计互补方法的重要性将在不久的将来进一步增加。在这项工作中,我们将最近引入的情境感知环境感知概念的适用性范围扩展到Unicaragil项目的分散自动化体系结构。考虑到车辆的特定驾驶能力,并以后处理方式使用有关目标硬件的实际数据,我们提供了每日降低功耗的估计,该功耗累积到36.2%。在实现这些有希望的结果的同时,我们还表明,如果应最佳利用情况意识的好处,则需要考虑软件模块设计中的数据处理中的可扩展性以及功能系统的设计。
translated by 谷歌翻译
在这项工作中,我们提出了MotionMixer,这是一个有效的3D人体姿势预测模型,仅基于多层感知器(MLP)。MotionMixer通过顺序混合这两种方式来学习时空3D身体姿势依赖性。给定3D身体姿势的堆叠序列,空间MLP提取物是身体关节的细粒空间依赖性。然后,随着时间的推移,身体关节的相互作用由时间MLP建模。最终将时空混合特征汇总并解码以获得未来的运动。为了校准姿势序列中每个时间步的影响,我们利用挤压和兴奋(SE)块。我们使用标准评估协议评估了36M,Amass和3DPW数据集的方法。对于所有评估,我们展示了最先进的性能,同时具有具有较少参数的模型。我们的代码可在以下网址找到:https://github.com/motionmlp/motionmixer
translated by 谷歌翻译
我们介绍了MGNET,这是一个多任务框架,用于单眼几何场景。我们将单眼几何场景的理解定义为两个已知任务的组合:全景分割和自我监管的单眼深度估计。全景分段不仅在语义上,而且在实例的基础上捕获完整场景。自我监督的单眼深度估计使用摄像机测量模型得出的几何约束,以便从单眼视频序列中测量深度。据我们所知,我们是第一个在一个模型中提出这两个任务的组合的人。我们的模型专注于低潜伏期,以实时在单个消费级GPU上实时提供快速推断。在部署过程中,我们的模型将产生密集的3D点云,其中具有来自单个高分辨率摄像头图像的实例意识到语义标签。我们对两个流行的自动驾驶基准(即CityScapes and Kitti)评估了模型,并在其他能够实时的方法中表现出竞争性能。源代码可从https://github.com/markusschoen/mgnet获得。
translated by 谷歌翻译
可靠的跟踪算法对于自动驾驶至关重要。但是,现有的一致性措施不足以满足汽车部门日益增长的安全需求。因此,这项工作提出了一种基于卡尔曼过滤和主观逻辑的混乱中单对象跟踪自我评估的新方法。该方法的一个关键特征是,它还提供了在线可靠性评分中收集的统计证据的量度。这样,可靠性的各个方面,例如假定的测量噪声,检测概率和混乱速率的正确性,除了基于可用证据的整体评估外,还可以监视。在这里,我们提出了用于研究问题的自我评估模块中使用的参考分布的数学推导。此外,我们介绍了一个公式,该公式描述了如何为冲突程度选择阈值,这是用于可靠性决策的主观逻辑比较度量。我们的方法在旨在建模不利天气条件的挑战性模拟场景中进行了评估。模拟表明,我们的方法可以显着提高多个方面杂物中单对象跟踪的可靠性检查。
translated by 谷歌翻译
大规模数据集启用了基于学习的轨迹预测的进步。但是,对此类数据集的深入分析是有限的。此外,对预测模型的评估仅限于数据集中所有样本的指标。我们提出了一种自动化方法,该方法允许从此类数据集中的代理轨迹提取操作(例如,左转,车道更改)。该方法考虑了有关代理动力学和有关代理商行驶的车道段的信息。尽管可以将最终的操纵用于训练分类网络,但我们将它们用于广泛的轨迹数据集分析和对多个最先进的轨迹预测模型的操纵特定评估。此外,还提供了基于代理动力学的数据集的分析和对预测模型的评估。
translated by 谷歌翻译
不利天气条件可能会对基于激光雷达的对象探测器产生负面影响。在这项工作中,我们专注于在寒冷天气条件下的车辆气体排气凝结现象。这种日常效果会影响对象大小,取向并引入幽灵对象检测的估计,从而损害了最先进的对象检测器状态的可靠性。我们建议通过使用数据增强和新颖的培训损失项来解决此问题。为了有效地训练深层神经网络,需要大量标记的数据。如果天气不利,此过程可能非常费力且昂贵。我们分为两个步骤解决此问题:首先,我们根据3D表面重建和采样提出了一种气排气数据生成方法,该方法使我们能够从一小群标记的数据池中生成大量的气体排气云。其次,我们引入了一个点云增强过程,该过程可用于在良好天气条件下记录的数据集中添加气体排气。最后,我们制定了一个新的训练损失术语,该损失术语利用增强点云来通过惩罚包括噪声的预测来增加对象检测的鲁棒性。与其他作品相反,我们的方法可以与基于网格的检测器和基于点的检测器一起使用。此外,由于我们的方法不需要任何网络体系结构更改,因此推理时间保持不变。实际数据的实验结果表明,我们提出的方法大大提高了对气体排气和嘈杂数据的鲁棒性。
translated by 谷歌翻译
手势识别对于自动驾驶汽车与人类的相互作用至关重要。尽管当前的方法着重于结合几种模式,例如图像特征,关键点和骨向量,但我们提出了神经网络体系结构,该结构仅通过身体骨架输入数据提供最新的结果。我们建议在自动驾驶汽车的背景下,为识别手势识别的时空多层感知器。给定的3D主体随着时间的推移,我们定义时间和空间混合操作以提取两个域中的特征。此外,每个时间步骤的重要性都会通过挤压和激发层重新加权。提供了对TCG和Drive&ACT数据集的广泛评估,以展示我们方法的有希望的性能。此外,我们将模型部署到自动驾驶汽车上,以显示其实时功能和稳定的执行。
translated by 谷歌翻译